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Hamiltonian Silnikov orbits are shown to be produced when a system of two-level atoms interacting via a self-consistent electric 

field in a single-model lossless cavity is perturbed by a small-amplitude probe laser (a weak, externally imposed, monochromatic 

electromagnetic field). This result is obtained by utilizing the two constants of motion which exist in the perturbed problem and 

by calculating a Melnikov function whose nondegenerate zeros imply transverse intersections of the stable and unstable manifolds 

of a hyperbolic fixed point set. The dynamics of the system on the Silnikov orbits contains a Smale horsehoe construction, leading 

to intermittent switching of the sign of the electric field which has extreme sensitivity to initial conditions. 

1. Introduction 

Chaos in laser-matter interactions has been a topic 
of considerable interest over the past few years. Sev- 
eral studies [ l-41 address the issue of chaotic time- 
dependence as atoms and molecules interact with self- 

consistently generated electromagnetic fields. These 
works consider Maxwell-Bloch dynamics in a gen- 
eralization of the Jaynes-Cummings model [ 5 1. In 

this model, an ensemble of two-state atoms interacts 
resonantly with a (classical) electromagnetic field in 
a single-mode lossless cavity. Averaging over the fast 
phases in the problem and neglecting nonresonant 
terms leads to a completely integrable Hamiltonian 
system which describes the Maxwell-Bloch dynam- 

ics in the so-called rotating wave approximation 
(RWA). 

Numerical studies by Belobrov et al. [ 1,2 1, and by 
Milonni et al. [3], indicate that the nonresonant 

terms neglected in the RWA lead to chaotic behavior 
(e.g., extreme sensitivity to initial conditions), which 
is claimed to occur above a threshold value of the 
coupling constant between the atoms and the field. 
In contrast, the numerical study by Alekseev and 
Berman (41 indicates that external forcing pertur- 
bations may cause chaos even within the RWA. Alek- 
seev and Berman [ 41 introduce a probe laser (an ex- 
ternal monochromatic field of constant amplitude), 

which is detuned from the resonant laser-matter in- 
teraction. Even at small amplitude, the external forc- 
ing perturbation of the probe laser is sufficient to 
break the integrability of the RWA. The numerical 
calculations of Alekseev and Berman [4] indicate 

that chaotic behavior is caused by the probe laser 
perturbation, even for small values of the coupling 
constant between the atoms and the field. In this case, 
the numerical evidence is broad-band power spectra 
of time series. Alekseev and Berman [ 41 also give a 
heuristic and approximate analytical discussion of 

this chaos in terms of a perturbed pendulum model 
of the laser-matter dynamics. 

In this paper, we present the exact solution for the 
problem treated numerically and approximately in 
ref. [4]. In particular, we show that homoclinic or- 
bits of Hamiltonian Silnikov type are produced by 
the perturbation, and thus provide the Smale hor- 
seshoe mechanism responsible for chaos in the model. 
This establishes analytically that the Maxwell-Bloch 
laser-matter interaction equations in the RWA can 
exhibit chaotic behavior under small external forcing. 

Within the RWA the dynamical system of per- 
turbed Maxwell-Bloch equations is 

k=S, .+=(&+ce’Wf).9, 

3=-t[(R+&e’“‘)P*+(g*+&e-‘“‘):Y]. 
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The variables in this set of equations are dimen- 
sionless (see eq. ( 11) in ref. [4] for their dimen- 
sional form). In these equations overdots denote time 
derivatives, &denotes the self-consistent electric field, 
.9 is the polarizability of the matter, and 9 is the 

difference of its occupation numbers, assuming the 
material response may be modeled by two levels - a 

ground state and an excited state. Here, I and 9 are 
complex scalar functions of time, 9 is real, E is the 
(constant) amplitude of the external driving field, 
and w is the detuning of the laser probe frequency 
from resonance with the two-level atoms. For non- 

zero E and o, these equations possess two integrals 
of motion: 

+ A [ (b+ee’W’)9*- (8*+&e-‘“‘):?I . 

These two integrals of motion result from unitarity 

(H) and energy conservation (I!.). The three sum- 
mands in L involve the self-consistent electric field 

energy, 4 1 RI 2, the excitation energy of the atoms, ~7, 
and the interaction energy of the polarizable me- 
dium with the total electric field, 8+&e’“‘. For a der- 
ivation of the perturbed Maxwell-Bloch equations 

from the Maxwell-Schriidinger equations and fur- 
ther discussion of the conserved quantities Hand L, 

see ref. [ 61. 

2. The unperturbed problem 

The unperturbed Maxwell-Bloch equations, with 

c=O, are 

kc.9 ) ,k 89, .G=-&w*+&*9). 

These unperturbed equations posses three 
of motion: 

H=tI?P12+fV2, J=; (@‘*-t*Y), 

K=j(cq2+9. 

integrals 

That is, in the absence of the external forcing, uni- 
tarity still yields conservation of H, the interaction 
energy J is now separately conserved; and K, the sum 

of the electric field energy and the atomic excitation 
energy, is also conserved. (Note: when w= 0 and E# 0 
there are also three conservation laws.) We elimi- 
nate 9 in favor of the conserved quantity K. Hence, 
the unperturbed equations become 

C?=:S, .+=d’(K-fI&l’), K?=O. 

On each level surface of K, these equations restrict 
to the ideal complex Dufftng equation, which can be 
derived from the Hamiltonian H in canonical phase 

space variables R and .ip, 

with Poisson bracket { 6*, 9}=2. Upon writing 
B = 9, + i:Y2 and c5= 4, + i R2, this Poisson bracket re- 

lation implies the usual form, { 4, S$} =a,,; so 8, and 
J2 may be taken as two real phase-space coordinates, 
and :Y, and .Y2 as their canonically conjugate mo- 

menta, in the usual symplectic sense. The other in- 
tegral, J, may now be written as 

Hence, the interaction energy J acts as the angular 
momentum for the system in these variables. That is, 
upon using the canonical Poisson brackets above for 

8 and 9, the quantity J generates an identical phase 
rotation in both 6, 9, namely, J: (8, 9)+ (e-“8’, 

em’@+‘). This, of course, suggests transforming to po- 
lar coordinates. 

We write R=Qele, where Q and 8 are the new co- 
ordinates, and P= 0 and J= Q* 4 are their canoni- 
cally conjugate momenta. The map from (Q, P, 0, J) 

to ( 8, 9’) is given by 

A=Qe”, .Y=(P+iJ/Q)eue. 

The Hamiltonian in the polar coordinates is inde- 
pendent of 8, 

H={P’+ $ +;(K-iQ’)*, 

and Hamilton’s equations for (Q, P, 8, J) are 

Q=p, ~=Q(K-~Q~)+ $, 

fL$, j=o. 
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From these equations, we obtain four basic Q-P 
phase portraits of this system, shown in figs. la- 1 d. 
The phase portrait of most interest here appears in 
fig. la, which shows a pair of homoclinic orbits in 
the Q-P plane for the case J=O and K>O. The ho- 

moclinic orbits are absent for the case J=O and K<O, 
shown in fig. I b, and are also absent for the cases 
withJ#Oshowninfig. Ic (K>O)andfig. Id (K<O). 
Figs. 1 c and 1 d show the usual “centrifugal barrier” 

singularity, introduced at Q= 0 in the phase portraits 
for J#O by the transformation to polar coordinates 
(Q, P, 0. J). There is no singularity at A’=0 in the 
original R-9 coordinates. 

Having used the polar coordinates to identify the 
homoclinic orbits present in the unperturbed prob- 
lem, we return to the original 8-9’ coordinates. The 
homoclinic orbits in the phase portrait for the case 
J=O and K> 0 represent a “pinched” torus of orbits 
in the original 8-9 coordinates homoclinic to the 

hyperbolic fixed point at the origin (see fig. 2). A 
particular solution on this torus is expressible in the 

complex 8-9 phase space as 

R=2JKsech(JKt)e’“, 

.Y=-2Ksech(JKt) tanh(JKt)e’“. 

The general solution on the homoclinic torus is ob- 
tained upon replacing I in this formula by I - fO. The 
hyperbolic point at Q= 0 = 9 corresponds to all the 
atoms being initially in the excited state, with no field 
energy. This point is unstable, and the solution on 
the torus describes the exchange of energy between 
the two-level atoms and the self-consistent field that 
results from a perturbation along the unstable direc- 
tion. Since the electric field and the polarizibility have 

P 

the same phase along the homoclinic orbit (and this 

phase is constant for J=O) the motion along the ho- 
moclinic orbit is just the homoclinic motion of the 
real Dufftng oscillator. 

3. The perturbed problem 

The discussion of the phase-space geometry of the 
unperturbed Maxwell-Bloch problem in the pre- 

vious section now provides the framework for study- 
ing the perturbed problem. The quantity wl, an in- 
tegral of motion for the unperturbed problem, may 
be used to generate a time-dependent canonical 
transformation to a frame which phase-rotates at the 
detuning frequency. The new complex canonical 

variables are 

x=&e--‘“‘, y=:~e-l”‘, 

with Poisson bracket {x*, y}=2. This transforma- 
tion leaves K unchanged (since {J, q vanishes) and 
brings the perturbed Maxwell-Bloch equations into 

autonomous form, namely 

_%= - iox+y , 

j=-iwy+(x+c)(K-iIx[‘), 

kc:= - ;&(y+y*) . 

These equations with E set equal to zero may be de- 
rived using the Poisson bracket {x*, v} = 2 and the 
Hamiltonian fi7= H - wJ, namely 

~?=~~~~Z+~(K-~~x(2)2+fi~(x*y-y*x). 

When E is nonzero, the two constants of motion in 
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Fig. I. (a) Q-P phase portrait of the unperturbed Maxwell-Bloch equations in polar coordinates for the case J=O and K> 0. (b) Q-P 

phase portrait for the caseJ=O and K<O. (c) Q-Pphase portrait for the case JfO and K>O. (d) Q-Pphase portrait for the case J#O 

and K< 0. 
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the first section are expressible in the phase-rotating 
frame as 

from unitarity, and 

L=oK+ ; [ (x+&)y*- (x*+&)y] , 

the total energy. 
Remarks 
( 1) For any value of E, the conserved quantity L 

generates the autonomous perturbed Maxwell-Bloch 
equations as a Hamiltonian system, G= { G, L}‘, for 

GE{x, x*, y, y*, v when using the noncanonical 
Poisson bracket, { , }‘, defined by the following re- 

lations and their complex conjugates, 

{x,x*}‘=-2i, {x,K)‘=-ix, 

(y,y*}‘=2i(K-i]x12), {y,K}‘=-iy. 

These noncanonical Poisson brackets satisfy the 
Jacobi identity, by virtue of being an invertible 
variable transformation of the symplectic bracket, 
{x, x*} = -2i, in direct sum with the Lie-Poisson 
bracket defined on su( 2)*, the dual of the Lie al- 
gebra su( 2 ). (Note: a Lie-Poisson bracket {G, q,, 
between real-valued functions G and H on the dual 
9* of a Lie algebra 3 is defined as the linear func- 

tional on 9, 

where ,UE Y*, aGIa,u and aHId,uE $9, the bracket 
[ , ] denotes the Lie product on f, and ( , ) is 
a real-valued non-degenerate pairing between Y* and 
!8. For an introductory discussion of Lie-Poisson 
brackets, see ref. [ 8 1. The phase-rotating Bloch vari- 
ables y, y*, and .Q:, satisfy the su( 2)* Lie-Poisson 
bracket relations, {y, y*},,=2i9 and {y’, g}Lp= 
iy*. ) The quantity H is the Casimir function for the 
noncanonical Poisson bracket; that is, {G, H}’ = 0, 
for every function G on the set of variables {x, x*, 
y, y*, K}. So, H is preserved as a consequence of the 
degeneracy of the noncanonical Poisson bracket, 
while L is preserved by virtue of being the Hamil- 
tonian for this bracket. 

(2) Holm and Fordy [ 71 show that the unper- 
turbed Maxwell-Bloch equations are tri-Hamilto- 
nian: the unperturbed equations are expressible in 

Hamiltonian form using any of three inequivalent 
Lie-Poisson brackets. These three Lie-Poisson 
brackets are related to the Lax-pair formulation of 
the equations and the inverse spectral method for 
solving them. 

We now investigate the equilibria of the perturbed 
Maxwell-Bloch equations in the phase-rotating 
frame. (Note: equilibrium solutions in the phase-ro- 
tating frame are refatiw equilibria; in the fixed frame 

these solutions are periodic orbits with period 240. ) 
These equilibria occur at the zeros of the right hand 
sides of the equations for x, y, and K. For e=O, the 
state x= y=O is a hyperbolic equilibrium for all pos- 
itive K. It is connected to itself by the two-dimen- 
sional “pinched” torus of homoclinic orbits found 

earlier in section 2 and given in the phase-rotating 

frame by 

x=2fisech(fiexp[i(&-ot)] , 

y=-2Ksech(fit) tanh(@f) exp[i($-wt)] . 

In other words, for e=O the unperturbed Maxwell- 
Bloch equations possess a curve of equilibria at (0, 
0, K) connected to itself in the x-y-K phase space 
by a homoclinic manifold. For each value of K, the 
homoclinic manifold restricts to the pinched torus 
formulas above (see fig. 3 ). 

For nonzero E, we look for a nearby curve of equi- 
libriax=x(K), y=y(K) withx(K), y(K) beingo(e). 
We find 

Fig. 2. Sketch of a pinched torus of homoclinic orbits. The cen- 
tral point, d=O= 9, corresponds physically to all of the atoms 
being in the excited state. 
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Pinched Torus ( 

Fig. 3. Sketch showing the curve of hyperbolic equilibria and its 

homoclinic manifold, the union of the pinched tori parameter- 

ized by K. 

VI =x2=0, .v2=wx1 , 

By the implicit function theorem, this equation has 

a root x,=0(e), and hence the required curve of 
equilibria persists. The eigenvalues at each of the 
equilibria are equal to 

0, +{ [fi +o(c’)] +_i[w+o(c’)]) . 

The zero eigenvalue corresponds to the fact that the 
equilibria form a curve and so have a neutral direc- 
tion (along K) due to the existence of the two con- 
stants of motion in the system, H and L. The form 
of the other four eigenvalues is due to the Hamil- 
tonian nature of the problem. The orbits on both the 
stable and unstable manifolds passing through each 
equilibrium on the curve of equilibria are spirals. 

4. Transverse intersections obtained by Melnikov 
zeros 

For each choice of H and L, each equilibrium of 
the perturbed problem possesses a two-dimensional 
stable manifold, and a two-dimensional unstable 
manifold. To check for intersections of these stable 
and unstable manifolds, we make use of the unper- 

turbed integrable structure. In particular, we use the 
“pinched” homoclinic tori of the unperturbed prob- 
lem to parametrize the perturbed manifolds, and we 
measure distance between the perturbed manifolds 
of each perturbed equilibrium along the vectors nor- 
mal to those tori. For a comprehensive treatment and 

references for this method, see ref. [ 91. For more de- 
tails of the present application, see ref. [ 61. The un- 
perturbed tori are either parametrized by the solu- 

tions stated above for them, or are given in implicit 
form by the equations 

K=const , If= fK2, J=O , 

Each homoclinic torus therefore possesses three nor- 
mal vectors: 

n, =VK , nz=V(H-fK’), n,=VJ, 

with 

,=2?2Ya22? 
( > ax, 'ax,'a_v, ' ay,' aK . 

At first glance, it seems that we must measure the 
splitting distance in five dimensions along all three 
normals. However, the two-dimensional stable and 

unstable manifolds of any of the equilibria are hofh 
contained in the three-dimensional hypersurface 
H= const, L=const (see fig. 4). Therefore, a dis- 
tance measurement in only one direction is needed. 
WC choose to measure it along n,=VJ, using the Mel- 
nikov technique [9]. The Melnikov function meas- 
uring the distance between the stable and unstable 

manifolds of the curve of equilibria depending on K 
for E# 0 is the following integral along the unper- 
turbed homoclinic orbit, 

M(&) = j n, .g dt 
-CcG 

wn 

=errcU2 sech 2JK 
- sin eo, 

where g is the perturbation part of the vector field, 

g= (0, 0, c(K- I Ixl’), 0, --EYI) . 

(Notice that nJ-g=-&sin(&,-wt); so, after in- 
tegrating by parts twice, the integral along the un- 
perturbed orbit Q(t) can be found in standard 
tables. ) 
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Fig. 4. (a) Sketch of an unperturbed hypersurface, H=const, 
L=const, showing a pinched homoclinic torus. (b) Sketch of 
transverse intersections on a perturbed hypersurface, H=const, 
L=const. (All of the intersections taken together on one arm of 
the sketch comprise one Hamiltonian Silnikov orbit). 

The Melnikov function M( 0,) has simple zeros at 

tY,=O and n, implying transverse intersections of the 

two-dimensional stable and unstable manifolds; 

therefore, two Silnikov-type homoclinic orbits con- 

nect each hyperbolic equilibrium to itself (see fig. 

5 ). As mentioned before, the orbits on both the sta- 
ble and unstable manifolds passing through each 

perturbed equilibrium on the curve of equilibria are 

spirals. Therefore, the dynamics along the intersec- 

tions of the stable and unstable manifolds of these 

equilibria falls into a class for which Devaney [ IO] 

has constructed Smale horseshoes, implying homo- 

clinic chaos. A typical chaotic trajectory (see fig. 6) 
will spend most of its time near the two homoclinic 

orbits I-’ of the unperturbed problem, given in the 
original Maxwell-Bloch variables by 

Fig. 5. Sketch of a pair of Hamiltonian Silnikov orbits. (The 
drawing actually shows a pair of regular Silnikov orbits. Hamil- 
tonian Silnikov orbits would spiral inwards along the stable man- 
ifold and outwards along the unstable manifold in an intrinsi- 
cally four-dimensional way; but this, of course, is impossible to 
draw! ) 

‘p 

L z 

Fig. 6. Sketch of a typical chaotic trajectory showing intermittent 
switching. 

I= +2,/??sech(JK t) , 

9=T2Ksech(JKt) tanh(JKt) , 

9=K[ 1-2 sech2(,,/Kt)] . 

An initial condition starting near the unperturbed 
hyperbolic set I=O= 9, 9= K, will follow a phase 
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trajectory that stays in the vicinity of the homoclinic 
orbits I+ and I- (shown in fig. la) but switches 
intermittently between the right ( + ) and left ( - ) 
branches each time it passes near the point 6= 0 = .P, 
p;r= K (i.e., the origin in fig. la). Being associated to 

a Smale horseshoe construction, the intermittent 
switching shows extreme sensitivity to initial con- 

ditions. So, while this switching is deterministic in 

principle, it would be uncomputable and essentially 
random in practice. 
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